Respuesta :

The general form for the equation of a line is:

[tex]y = mx + c[/tex]

Where:

m is the gradient of the line

c is the y intercept of the line  (y - intercept is where the graph crosses the y-axis)

So if you had the following equation:

[tex]y = 3x + 2[/tex]

Then:

m = 3

c = 2

So gradient = 3, and y intercept = 2

---------------------------------------------------

Rearranging

So first rearrange both of the equations in the form y = mx + c :

[tex]3x + 2y = -1[/tex]   becomes  [tex]y = -\frac{3}{2} x-\frac{1}{2}[/tex]      [tex](where: \ m = -\frac{3}{2} \ and, \ c = -\frac{1}{2} )[/tex]

and:

[tex]2x+7y=2[/tex]  becomes  [tex]y=-\frac{2}{7}x +\frac{2}{7}[/tex]     [tex](where: \ m = -\frac{2}{7} \ and, \ c = \frac{2}{7})[/tex]

---------------------------------------------

The question tells us that the equation of the line we are looking for has the same y-intercept as:

[tex]2x+7y=2[/tex]

So the line we are trying to work out will also have a y intercept of   [tex]\frac{2}{7}[/tex]

(refer to rearranging)

----------------------------

The question also tells us that the line is perpendicular to  [tex]3x + 2y = -1[/tex]

Perpendicular gradient = negative reciprocal of the gradient of the line it is perpendicular to.

So the gradient of the new line will be the  negative reciprocal of the gradient of  [tex]3x + 2y = -1[/tex]

Gradient of  [tex]3x + 2y = -1[/tex]  is: [tex]-\frac{3}{2}[/tex]

(refer to rearranging)

Gradient of new line: = negative reciprocal of  [tex]-\frac{3}{2}[/tex] , which is  [tex]\frac{2}{3}[/tex]

(just flip fraction and change the sign)

------------------------------------

So for the new line: [tex]m = \frac{2}{3} \ and, \ c = \frac{2}{7}[/tex]

So just substitute in the values for m and c into: y = mx + c

[tex]y = mx + c\\y = \frac{2}{3} x + \frac{2}{7}[/tex]

-----------------------------

Answer:

So equation of the new line is:

[tex]y = \frac{2}{3}x + \frac{2}{7}[/tex]

------------

Any questions, just ask.