quiarah
contestada

What is the following product? RootIndex 3 StartRoot 24 EndRoot times RootIndex 3 StartRoot 45 EndRoot RootIndex 3 StartRoot 69 EndRoot 4 (RootIndex 3 StartRoot 6 EndRoot) 6 (RootIndex 3 StartRoot 5 EndRoot) 6 (RootIndex 3 StartRoot 10 EndRoot)

Respuesta :

Answer:

Answer is C

Step-by-step explanation:

The result of product [tex]\sqrt[3]{24} \times \sqrt[3]{45}[/tex] is [tex]6\sqrt[3]{5}[/tex].

The product is represented as:

[tex]\sqrt[3]{24} \times \sqrt[3]{45}[/tex]

Multiply the roots

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= \sqrt[3]{24\times 45}[/tex]

Rewrite the above expression as:

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= (24\times 45)^{1/3}[/tex]

Expand 24

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= (3 \times 8 \times 45)^{1/3}[/tex]

Express 8 as 2^3

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= (3 \times 2^3 \times 45)^{1/3}[/tex]

So, we have:

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 2(3 \times 45)^{1/3}[/tex]

Express 45 as 9 * 5

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 2(3 \times 9 \times 5)^{1/3}[/tex]

Express 9 as 3^2

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 2(3 \times 3^2 \times 5)^{1/3}[/tex]

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 2(3^3 \times 5)^{1/3}[/tex]

So, we have:

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 2\times 3(5)^{1/3}[/tex]

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 6(5)^{1/3}[/tex]

Rewrite as:

[tex]\sqrt[3]{24} \times \sqrt[3]{45}= 6\sqrt[3]{5}[/tex]

Hence, the result of product [tex]\sqrt[3]{24} \times \sqrt[3]{45}[/tex] is [tex]6\sqrt[3]{5}[/tex]

Read more about products at:

https://brainly.com/question/10873737