Answer:
D
Step-by-step explanation:
There is a common difference d between consecutive terms, that is
d = - 1 [tex]\frac{1}{2}[/tex] -(- [tex]\frac{1}{2}[/tex] ) = - 1
d = - 2 [tex]\frac{1}{2}[/tex] - (- 1 [tex]\frac{1}{2}[/tex] ) = - 1
d = - 3 [tex]\frac{1}{2}[/tex] - (- 2 [tex]\frac{1}{2}[/tex] ) = - 1
This indicates the sequence is arithmetic with explicit formula
[tex]a_{n}[/tex] = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = - [tex]\frac{1}{2}[/tex] and d = - 1 , thus
[tex]a_{n}[/tex] = - [tex]\frac{1}{2}[/tex] - 1 (n - 1) = - [tex]\frac{1}{2}[/tex] - n + 1 = [tex]\frac{1}{2}[/tex] - n , where n = 1, 2, 3, 4, ......