Respuesta :

Answer:

D

Step-by-step explanation:

There is a common difference d between consecutive terms, that is

d = - 1 [tex]\frac{1}{2}[/tex] -(- [tex]\frac{1}{2}[/tex] ) = - 1

d = -  2 [tex]\frac{1}{2}[/tex] - (- 1 [tex]\frac{1}{2}[/tex] ) = - 1

d = - 3 [tex]\frac{1}{2}[/tex] - (- 2 [tex]\frac{1}{2}[/tex] ) = - 1

This indicates the sequence is arithmetic with explicit formula

[tex]a_{n}[/tex] = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

Here a₁ = - [tex]\frac{1}{2}[/tex] and d = - 1 , thus

[tex]a_{n}[/tex] = - [tex]\frac{1}{2}[/tex] - 1 (n - 1) = - [tex]\frac{1}{2}[/tex] - n + 1 = [tex]\frac{1}{2}[/tex] - n , where n = 1, 2, 3, 4, ......