Answer:
Please read the complete procedure below:
Step-by-step explanation:
You have the following initial value problem:
[tex]y'+2y=4t\\\\y(0)=8[/tex]
a) The algebraic equation obtain by using the Laplace transform is:
[tex]L[y']+2L[y]=4L[t]\\\\L[y']=sY(s)-y(0)\ \ \ \ (1)\\\\L[t]=\frac{1}{s^2}\ \ \ \ \ (2)\\\\[/tex]
next, you replace (1) and (2):
[tex]sY(s)-y(0)+2Y(s)=\frac{4}{s^2}\\\\sY(s)+2Y(s)-8=\frac{4}{s^2}[/tex] (this is the algebraic equation)
b)
[tex]sY(s)+2Y(s)-8=\frac{4}{s^2}\\\\Y(s)[s+2]=\frac{4}{s^2}+8\\\\Y(s)=\frac{4+8s^2}{s^2(s+2)}[/tex] (this is the solution for Y(s))
c)
[tex]y(t)=L^{-1}Y(s)=L^{-1}[\frac{4}{s^2(s+2)}+\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+L^{-1}[\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}[/tex]
To find the inverse Laplace transform of the first term you use partial fractions:
[tex]\frac{4}{s^2(s+2)}=\frac{-s+2}{s^2}+\frac{1}{s+2}\\\\=(\frac{-1}{s}+\frac{2}{s^2})+\frac{1}{s+2}[/tex]
Thus, you have:
[tex]y(t)=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}\\\\y(t)=L^{-1}[\frac{-1}{s}+\frac{2}{s^2}]+L^{-1}[\frac{1}{s+2}]+8e^{-2t}\\\\y(t)=-1+2t+e^{-2t}+8e^{-2t}=-1+2t+9e^{-2t}[/tex]
(this is the solution to the differential equation)