Respuesta :
Answer:
1. P(all are correct) =0.00000256
2. P ( all are incorrect) = 0.1677
3. P( at least one correct ) = 0.8310
c. P(r ≥ 1) = 0.8322
d. P ( half the questions are incorrect) = 0.046
Step-by-step explanation:
Let A be the event that he will choose the correct answer and there is only one correct answer out of 5 choices so the probability of A = P(A)= 1/5
As there are 8 number of questions so n= 8
Applying the binomial theorem
P(all are correct) = ⁸C₈ (1/5)⁸ (4/5)°= 1* 1/5*5*5*5*5*5*5*5 (1)
a. P(all are correct) = 1/625 *625= 1/390625= 0.00000256
b. P ( all are incorrect) = ⁸C₀ (1/5)° (4/5)⁸= 1* 4*4*4*4*4*4*4*4/5*5*5*5*5*5*5*5 (1)= 256*256/625 *625= 65336/390625 = 0.1677
c. P( at least one correct ) = P (one Correct) + P( 2 Correct) + P (3 correct) + P( 4 correct) + P ( 5 correct) + P ( 6 correct) + P ( 7 correct) + P ( 8 correct)
P( at least one correct ) = 0.00008192+ 0.00114688+ 0.00917504 + 0.0458752 + 0.14680064 + 0.29360 + 0.335544 +0.00000256
P( at least one correct ) = 0.8310
P (one Correct) = ⁸C₇ (1/5)⁷ (4/5)= 8* 1/5*5*5*5*5*5*5 * 4/5 = 0.00008192
P( 2 Correct) = ⁸C₆ (1/5)⁶ (4/5)²= 28 * 1/5*5*5*5*5*5* 16/25= 0.00114688
P (3 correct)=⁸C5₅ (1/5)⁵ (4/5) ³= 56* 1/5*5*5*5*5* 64/125 = 0.00917504
P( 4 correct) = ⁸C₄(1/5)⁴ (4/5)⁴= 70* 1/5*5*5*5 * 256/625 = 0.0458752
P ( 5 correct) = ⁸C₃ (1/5)³ (4/5)⁵= 56 * 1/5*5*5 *1024/ 3125 = 0.14680064
P ( 6 correct)= ⁸C₂ (1/5)² (4/5) ⁶= 28* 1/5*5 * 4096 /15625= 0.29360
P ( 7 correct) = ⁸C₁ (1/5) (4/5)⁷= 8* 1/5 * 16384/78125 = 0.335544
P(r ≥ 1) = 1 − P(r = 0).
=1- 0.1 677 = 0.8322
d. P ( half the questions are incorrect) =⁸C₄ (1/5)⁴ (4/5)⁴
= 70 * 1*1*1*1/ 5*5*5*5* 4*4*4*4/5*5*5*5 = 70 * 1/ 625* 256/625 = 0.0458= 0.046