Answer:
The answer is "26.55 V"
Explanation:
Given values:
[tex]d_i= 0.96m\\d_o= 1m\\\epsilon = 0.05\\T_0= 280k\\T_i= 95k\\[/tex]
For Answer (a) please find the attachment.
Answer (b):
[tex]q_{i-0}= \frac{\sigma (T_{0}^4)-(T_{i}^4)}{\frac{1-\epsilon i }{\epsilon_{i} A_{i}}+ \frac{1 }{\ f_{i o} A_{i}} +\frac{1-\epsilon_{0}}{\epsilon_{0} A_{0}}}[/tex]
[tex]f_{i0}= 1 \ it \ is \ fully \ inside \ the \ large \ sphero \\[/tex]
[tex]q_{i-0}= \frac{\sigma A_i (T_{0}^4)-(T_{i}^4)}{\frac{1 }{\epsilon_{i}} - 1+ 1 +\frac{1-\epsilon_{0}}{\epsilon_{0}} \times \frac{A_i}{A_0}}\\\\q_{i-0}= \frac{\sigma A_i (T_{0}^4)-(T_{i}^4)}{\frac{1 }{\epsilon_{i}} +\frac{1-\epsilon_{0}}{\epsilon_{0}} \times (\frac{d_i}{d_0})^2}\\\\q_{i-0}= \frac{\sigma (\pi d^2_i) (T_{0}^4)-(T_{i}^4)}{\frac{1 }{\epsilon_{i}} +\frac{1-\epsilon_{0}}{\epsilon_{0}} \times (\frac{r_i}{r_0})^2}\\\\[/tex]
[tex]q_{i-0}= \frac{5.67 \times 10^{-8} \times 3.14 \times 9.62 \times 9.62 \times (280^4-94^4)}{\frac{1 }{0.05} +\frac{1-0.05}{0.05} \times (\frac{0.96}{1})^2}\\\\\ After \ solve the \ equation \ the \ answer \ is:\\\\q_{i-0} = 26.55 \ V[/tex]