Solve this quadratic equation by completing the square.
x^2+6x=18

[tex] x = - 3 + \sqrt{27} [/tex]
[tex]x = - 3 + \sqrt18[/tex]
[tex]x = - 6 + \sqrt{27} [/tex]
[tex]x = - 6 + \sqrt{18} [/tex]

please help​

Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given equation is

[tex]x^2+6x=18[/tex]

We need to find the roots using completing the square.

[tex]\left(\dfrac{b}{2}\right)^2=\left(\dfrac{6}{2}\right)^2=3^2=9[/tex]

Add 9 on both sides in the given equation to make it perfect square.

[tex]x^2+6x+9=18+9[/tex]

[tex]x^2+2(x)(3)+3^2=27[/tex]

[tex](x+3)^2=27[/tex]

Taking square root on both sides.

[tex]x+3=\sqrt{27}[/tex]

Subtract 3 from both sides.

[tex]x=-3+\sqrt{27}[/tex]

Therefore, the correct option is A.