Respuesta :

Answer:

[tex]x + y = \frac{5}{6} [/tex]

Step-by-step explanation:

Let:

[tex]u = \frac{1}{x} \\ v = \frac{1}{y} [/tex]

This allows us to manipulate the equations like we normally would.

[tex]2u + 3v = 13 \\ 5u - 4v = - 2 \\ \\ + 8u + 12v = 52 \\ + 15u - 12v = - 6 \\ 23u = 46 \\ u = 2 \\ \\ 2(2) + 3v = 13 \\ 4 + 3v = 13 \\ 3v = 9 \\ v = 3[/tex]

Then, we return the values where they belong.

[tex]u = \frac{1}{x} \\ 2 = \frac{1}{x} \\ x = \frac{1}{2} \\ \\ v = \frac{1}{y} \\ 3 = \frac{1}{y} \\ y = \frac{1}{3} [/tex]

Finally, we add:

[tex] \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} [/tex]

Given that

(2/x)+(3/y) = 13--------(1)

(5/x)-(4/y) = -2 -------(2)

Put 1/x = a and 1/y = b then

2a + 3b = 13 ----------(3)

On multiplying with 5 then

10a +15 b = 65 -------(4)

and

5a -4b= -2 ----------(5)

On multiplying with 2 then

10 a - 8b = -4 -------(6)

On Subtracting (6) from (4) then

10a + 15b = 65

10a - 8b = -4

(-)

_____________

0 + 23 b = 69

______________

⇛ 23b = 69

⇛ b = 69/23

⇛ b =3

On Substituting the value of b in (5)

5a -4b= -2

⇛ 5a -4(3) = -2

⇛ 5a -12 = -2

⇛ 5a = -2+12

⇛ 5a = 10

⇛ a = 10/5

⇛ a = 2

Now we have

a = 2

⇛1/x = 2

⇛ x = 1/2

and

b = 3

⇛1/y = 3

⇛ y = 1/3

Answer :-The solution for the given problem is (1/2,1/3)

Check: If x = 1/2 and y = 1/3 then

LHS = (2/x)+(3/y)

= 2/(1/2)+3/(1/3)

= (2×2)+(3×3)

= 4+9

= 13

= RHS

LHS=RHS is true

and

LHS=(5/x)-(4/y)

⇛ 5/(1/2)- 4/(1/3)

⇛(5×2)-(4×3)

⇛ 10-12

⇛ -2

⇛RHS

LHS = RHS is true

Now,

X+Y

= (1/2) + (1/3)

Take the LCM of 2 and 3 is 6.

= (3+2)/6

= 5/6.