Find the complete solution of the linear system, or show that it is inconsistent.
x + y + z = 8
x + 3y + 3z = 16
2x + y − z = 10

Respuesta :

Answer:

[tex]x=4\\y=3\\z=1[/tex]

Step-by-step explanation:

[tex](a) x+y+z=8\\(b)x+3y+3z=16\\(c)2x+y-z=10[/tex]

Let's add equation a and c to make a new equation in which z is not a variable.

[tex]x+y+z=8\\2x+y-z=10[/tex]

--------------------------

[tex](d)3x+2y=18[/tex]

Now let's add equation b and c, but first, multiply equation c by 3, so that the z's will be eliminated.

[tex](3)(2x+y-z=30)\\(e)6x+3y-3z=30[/tex]

Add b and e.

[tex]x+3y+3z=16\\6x+3y-3z=30[/tex]

-----------------------------------

[tex](f)7x+6y=46[/tex]

Now you have a two variable system of equations (d and f)

[tex]3x+2y=18\\7x+6y=46[/tex]

You can solve this by multiplying by equation d by 6 and equation f by -2

[tex](6)(3x+2y=18)\\(-2)(7x+6y=46)[/tex]

Leaving our equations like;

[tex]18x+12y=108\\-14x-12y=-92[/tex]

Add them to eliminate y

[tex]18x+12y=108\\-14x-12y=-92[/tex]

--------------------------------

[tex]4x=16[/tex]

solve for x;

[tex]x=\frac{16}{4} \\x=4[/tex]

Replace x in either d or f, to find y

[tex]3x+2y=18[/tex]

[tex]3(4)+2y=18\\12+2y=18\\2y=18-12\\2y=6\\y=\frac{6}{2}\\ y=3[/tex]

Now that you have found x and y, replace them in either a, b, or c, to find z

[tex]x+y+z=8\\4+3+z=8\\7+z=8\\z=8-7\\z=1[/tex]

To make sure that you have found the right values, replace all three variables in any of the equations and it should be equal.

[tex]x+3y+3z=16\\4+3(3)+3(1)=16\\4+9+3=16\\16=16[/tex]