contestada

A mixture of XO2 (P = 3.00 atm) and O2 (P = 1.00 atm) is placed in a container. This elementary reaction takes place at 27 °C: 2 XO2 (g) + O2 (g) k1 k−1 2 XO3 (g) At equilibrium, the total pressure is 3.75 atm. (a) Determine the value of standard free energy ∆G◦ rxn at 27 °C (unit: kJ/mol). (b) Given that k1 = 7.8 × 10−2 M−2 s −1 , determine the value of k−1 at 27 °C (unit: M−1 s −1 ).

Respuesta :

Answer:

a) [tex]\triangle G^{0} = 7.31 kJ/mol[/tex]

b) [tex]K_{-1} = 0.0594 m^{-1} s^{-1}[/tex]

Explanation:

Equation of reaction:

                                     [tex]2 XO_{2} (g) + O_{2} (g) \rightleftharpoons 2XO_{3} (g)[/tex]

Initial pressure                  3              1              0

Pressure change             2P           1P             2P

Total pressure = (3-2P) + (1-P) + (2P)

Total Pressure = 3.75 atm

(3-2P) + (1-P) + (2P) = 3.75

4 - P = 3.75

P = 4 - 3.75

P = 0.25 atm

Let us calculate the pressure of each of the components of the reaction:

Pressure of XO2 = 3 - 2P = 3 - 2(0.25)

Pressure of XO2 =2.5 atm

Pressure of O2 = 1 - P = 1 -0.25

Pressure of O2 = 0.75 atm

Pressure of XO3 = 2P = 2 * 0.25

Pressure of XO3 = 0.5 atm

From the reaction, equilibrium constant can be calculated using the formula:

[tex]K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }[/tex]

[tex]K_{p} = \frac{0.5^2}{2.5^2 *0.75} \\K_{p} = 0.0533 = K_{eq}[/tex]

Standard free energy:

[tex]\triangle G^{0} = - RT ln k_{eq} \\\triangle G^{0} = -(0.008314*300* ln0.0533)\\\triangle G^{0} = 7.31 kJ/mol[/tex]

b) value of k−1 at 27 °C, i.e. 300K

[tex]K_{1} = 7.8 * 10^{-2} m^{-2} s^{-1}[/tex]

[tex]K_{c} = K_{p}RT\\K_{c} = 0.0533* 0.0821 * 300\\K_{c} = 1.313 m^{-1}[/tex]

[tex]K_{-1} = \frac{K_{1} }{K_{c} } \\K_{-1} = \frac{7.8 * 10^{-2} }{1.313 }\\K_{-1} = 0.0594 m^{-1} s^{-1}[/tex]