Triangle A B C with exterior angles is shown. Side C A is extended to point E, side A B is extended to point F, and side B C is extended to point D. Exterior angle E A B is 108 degrees and exterior angle F B C is 145 degrees.
What is the measure of angle ACB?
°

Respuesta :

Answer:

73 degrees

Step-by-step explanation:

From the given triangle

[tex]\angle EAB + \angle BAC=180^\circ(Linear\:Postulate)\\108^\circ+\angle BAC=180^\circ\\\angle BAC=180^\circ-108^\circ=72^\circ[/tex]

Similarly,

[tex]\angle FBC + \angle ABC=180^\circ(Linear\:Postulate)\\145^\circ+\angle ABC=180^\circ\\\angle ABC=180^\circ-145^\circ=35^\circ[/tex]

In Triangle ABC

[tex]\angle ABC + \angle BAC+\angle ACB =180^\circ(Sum\:of\:angles\:in\:a\:triangle)\\35^\circ+72^\circ+\angle ACB =180^\circ\\\angle ACB =180^\circ-35^\circ-72^\circ\\\angle ACB =73^\circ[/tex]

Ver imagen Newton9022

Answer:the correct answer would be 73

Step-by-step explanation: