Respuesta :
Answer:
[tex]x<-4\quad \mathrm{or}\quad \:x>4[/tex]
[tex]\{x\in \mathbb{R}| \:\left(-\infty \:,\:-4\right)\cup \left(4,\:\infty \:\right) \}[/tex]
Step-by-step explanation:
[tex]x^2>16[/tex]
[tex]x<-\sqrt{16}\quad \mathrm{or}\quad \:x>\sqrt{16}[/tex]
[tex]x<-4\quad \mathrm{or}\quad \:x>4[/tex]
The interval notation will be:
[tex]\{x\in \mathbb{R}| \:\left(-\infty \:,\:-4\right)\cup \left(4,\:\infty \:\right) \}[/tex]
The contrary,
[tex]x^2<16[/tex]
is [tex]-4<x<4[/tex]
No it doesn't flip. You split into two possible cases with two separate inequalities.
x^2 > 16
| x | > 4
And since now you are working with an absolute value, you split into 2 possible cases.
if x >= 0: then x > 4
if x < 0: then -x > 4
x < -4
FOR THE FIRST:
x ∈ (4, + ∞)
FOR THE SECOND:
x ∈ (-∞, -4)
Their UNITY is: x ∈ (-∞, -4) U (4, +∞)
And that's how you go about solving these. Hope I helped! :)