Respuesta :
Answer:
[tex]$x=\frac{1}{2}$[/tex]
Step-by-step explanation:
If it was not mentioned, the base is 10.
[tex]\log _{10}4+\log _{10}\left(x+2\right)=1[/tex]
[tex]\log _{10}4+\log _{10}\left(x+2\right)-\log _{10}4=1-\log _{10}4[/tex]
[tex]\log _{10}\left(x+2\right)=1-\log _{10}4[/tex]
[tex]\log _{10}\left(x+2\right)=1-2\log _{10}2[/tex]
Considering [tex]\mathrm{if} \log _a\left(b\right)=c\:\mathrm{then}\:b=a^c[/tex]
[tex]$x+2=10^{1-2\log _{10}\left2$[/tex]
[tex]x+2=10^{-2\log _{10}\left(2\right)}\cdot \:10^1[/tex]
[tex]x+2=\left(10^{\log _{10}\left(2\right)}\right)^{-2}\cdot \:10^1[/tex]
[tex]x+2=2^{-2}\cdot \:10^1[/tex]
[tex]$x+2=10\cdot \frac{1}{2^2}$[/tex]
[tex]$x+2=\frac{10}{2^2}$[/tex]
[tex]$x+2=\frac{5}{2}$[/tex]
[tex]$x+2-2=\frac{5}{2}-2$[/tex]
[tex]$x=\frac{1}{2}$[/tex]
Answer:
The correct answer is 4x + 8 = 101 on edge 2020. The second part is x=1/2
Step-by-step explanation: