Respuesta :
Answer:
f = uv/ (v+u)
Step-by-step explanation:
1/f= 1/u+1/v
Multiply each side by fuv to clear the fractions
fuv( 1/f)= fuv(1/u+1/v)
uv = fv+ uf
Factor out the f on the right hand side
uv = f(v+u)
Divide each side by (v+u)
uv/ (v+u) = f(v+u)/ (v+u)
uv/ (v+u) = f
Answer: f=uv/(v-u)
Step-by-step explanation:
1/f=1/u + 1/v
1/f=(v-u)/uv
Cross multiplying we get
uv=f(v-u)
Divide both sides by (v-u)
uv/(v-u)=f(v-u)/(v-u)
uv/(v-u)=f
Therefore f=uv/(v-u)