Respuesta :

Answer:

The midpoint is [tex](\frac{7}{2}, -\frac{9}{2})[/tex]

Step-by-step explanation:

The formula for finding the midpoint of a line is [tex](\frac{x_{1} +x_{2} }{2}, \frac{y_{1}+ y_{2} }{2} )[/tex]

This means the formula for the x-coordinate of the midpoint is [tex]\frac{x_{1} +x_{2} }{2}[/tex], and the formula for the y-coordinate of the midpoint is [tex]\frac{y_{1}+y_{2} }{2}[/tex].

First, let's find the x-coordinate of the midpoint:

Add the two x values of the coordinates given, then divide that by two.

[tex]\frac{x_{1} + x_{2} }{2} = \frac{6+1}{2} =\frac{7}{2}[/tex]

Next, let's find the y-coordinate of the midpoint:

Add the two y values of the coordinates given, then divide that by two.

[tex]\frac{y_{1} +y_{2} }{2} = \frac{(-8) +(-1)}{2} = - \frac{9}{2}[/tex]

Therefore, the midpoint of the line segment is [tex](\frac{7}{2}, -\frac{9}{2})[/tex]. Hope this helps!

Answer:

7           9

_   ,    -  _

2           2

Step-by-step explanation:

ape.x   (7/2   - 9/2)