Respuesta :

Answer:

[tex]||v||\approx21.21[/tex]

[tex]\theta =-45^{\circ}[/tex]

Step-by-step explanation:

Given a vector of the form:

[tex]v=ai+bj\\\\a\in R, b\in R[/tex]

Its magnitude can be found using pythagorean theorem:

[tex]||v||=\sqrt{a^2+b^2}[/tex]

And its direction angle is given by:

[tex]\theta =arctan (\frac{b}{a} )[/tex]

In this sense for the vector:

[tex]v=15i-15j[/tex]

Its magnitude is:

[tex]||v||=\sqrt{(15)^2+(15)^2} =15\sqrt{2} = 21.21320344[/tex]

and its direction angle is:

[tex]\theta =arctan(\frac{-15}{15} )=-45^{\circ}[/tex]