Respuesta :
Answer:
3ab
-------------------
(b+a)
Step-by-step explanation:
3/a - 3/b
-------------------
1/a^2 - 1/b^2
Multiply the top and bottom by a^2 b^2/ a^2/b^2 to clear the fractions
(3/a - 3/b) a^2 b^2
-------------------
(1/a^2 - 1/b^2) a^2b^2
3ab^2 - 3 a^2 b
-------------------
b^2 - a^2
Factor out 3ab on the top
3ab( b-a)
-------------------
b^2 - a^2
The bottom is the difference of squares
3ab( b-a)
-------------------
(b-a) (b+a)
Cancel like terms from the top and bottom
3ab
-------------------
(b+a)
Answer:
3ab/(b+a)
Step-by-step explanation:
Simplifying the numerator:
3/a - 3/b
3[1/a - 1/b]
Lcm is ab
3[(b - a)/ab]
Simplifying the denominator:
1/a² - 1/b²
Lcm: a²b²
(b² - a²)/(a²b²)
(b - a)(b + a)/(a²b²)
Numerator ÷ denominator
3[(b - a)/ab] ÷ (b - a)(b + a)/(a²b²)
3[(b - a)/ab] × a²b²/[(b - a)(b + a)]
3ab/(b + a)