Respuesta :
Answer:
[tex]x=-\frac{7}{18}+\frac{\sqrt[]{193} }{18}[/tex] which is the same as [tex]x=0.38[/tex]
or
[tex]x=-\frac{7}{18}-\frac{\sqrt[]{193} }{18}[/tex] which is the same as [tex]x=-1.16[/tex]
Step-by-step explanation:
[tex]9x^2-4+7x=0[/tex]
Rearranging...
[tex]9x^2+7x-4=0[/tex]
a=9
b=7
c=-4
[tex]x=\frac{-b\frac{+}{}\sqrt[]{b^2-4ac} }{2a}[/tex]
[tex]x=\frac{-7\frac{+}{}\sqrt[]{(7)^2-4(9)(-4)} }{2(9)}[/tex]
[tex]x=\frac{-7\frac{+}{}\sqrt[]{49+144} }{18}[/tex]
[tex]x=\frac{-7\frac{+}{}\sqrt[]{193} }{18}[/tex]
----------------------------------------
[tex]x=-\frac{7}{18}+\frac{\sqrt[]{193} }{18}[/tex]
or
[tex]x=-\frac{7}{18}-\frac{\sqrt[]{193} }{18}[/tex]
-------------------------------------------
If you need decimals, you can solve;
[tex]x=0.38\\[/tex]
or
[tex]x=-1.16[/tex]