Respuesta :

Answer:

x=0.4, x=-1.2

Step-by-step explanation:

Answer:

[tex]x=-\frac{7}{18}+\frac{\sqrt[]{193} }{18}[/tex] which is the same as [tex]x=0.38[/tex]

or

[tex]x=-\frac{7}{18}-\frac{\sqrt[]{193} }{18}[/tex] which is the same as [tex]x=-1.16[/tex]

Step-by-step explanation:

[tex]9x^2-4+7x=0[/tex]

Rearranging...

[tex]9x^2+7x-4=0[/tex]

a=9

b=7

c=-4

[tex]x=\frac{-b\frac{+}{}\sqrt[]{b^2-4ac} }{2a}[/tex]

[tex]x=\frac{-7\frac{+}{}\sqrt[]{(7)^2-4(9)(-4)} }{2(9)}[/tex]

[tex]x=\frac{-7\frac{+}{}\sqrt[]{49+144} }{18}[/tex]

[tex]x=\frac{-7\frac{+}{}\sqrt[]{193} }{18}[/tex]

----------------------------------------

[tex]x=-\frac{7}{18}+\frac{\sqrt[]{193} }{18}[/tex]

or

[tex]x=-\frac{7}{18}-\frac{\sqrt[]{193} }{18}[/tex]

-------------------------------------------

If you need decimals, you can solve;

[tex]x=0.38\\[/tex]

or

[tex]x=-1.16[/tex]