Answer:
The energy it delivers is 5.799x10⁴J
Explanation:
Given data:
Em = maximum electric field = 2.09x10¹¹V/m
t = time = 1 ns = 1x10⁻⁹s
A = area = 1 mm² = 1x10⁻⁶m²
Question: What energy does it deliver, E = ?
First, you need to calculate the intensity of the wave:
[tex]I=\frac{c\epsilon *E_{m}^{2} }{2}[/tex]
Here
c = speed of light = 3x10⁸m/s
ε = permittivity = 8.85x10⁻¹²C²/N m²
Substituting:
[tex]I=\frac{3x10^{8}*8.85x10^{-12}*(2.09x10^{11})^{2} }{2} =5.799x10^{19}W/m^{2}[/tex]
The energy:
[tex]E=IAt=5.799x10^{19}*1x10^{-6}*1x10^{-9}=5.799x10^{4}J[/tex]