Respuesta :
Look at the picture.
Answer:
a. f(x) = log x + 3
[tex]f(x)=\log x\xrightarrow{T_{ \ \textless \ 0;\ 3 \ \textgreater \ }} f(x)=\log x+3\\\\/3\ usnits\ up/[/tex]
Answer:
a. f(x) = log x + 3
[tex]f(x)=\log x\xrightarrow{T_{ \ \textless \ 0;\ 3 \ \textgreater \ }} f(x)=\log x+3\\\\/3\ usnits\ up/[/tex]
Answer: a. f(x)=logx+3
Step-by-step explanation:
here, value of the function at 1 is 3 i.e. f(1)=3
since, log1=0
a)
f(x)= logx+3 satisfies f(1)=3
b)
f(x)=log(x+3)
f(1)=log4
= 1.3863≠3
c)
f(x)=logx-3
f(1)=-3≠3
d)
f(x)=logx-1
f(1)=-1≠3
hence, option a. f(x)=logx+3 is correct