Respuesta :
The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
Translaitng 8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
Answer: correct choice is B.
Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
Translaitng 8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
Answer: correct choice is B.
Answer:
The transformation that had taken place to map Quadrilateral ABCD to Quadrilateral A'B'C'D' is:
A translation 10 units down followed by a translation 8 units to the right
Step-by-step explanation:
We are given a vertices of Quadrilateral ABCD as:
A(-6,4) , B(-6,6) , C(-2,6) , D(-4,4)
Now when translation is done 10 units down then the rule that follows this transformation is:
(x,y) → (x,y-10)
and coordinate of the transformed image will be:
A(-6,4) → A°(-6,-6)
B(-6,6) → B°(-6,-4)
C(-2,6) → C°(-2,-4)
D(-4,4) → D°(-4,-6)
Now when this image is translated 8 units to the right we obtain image A'B'C'D' and the coordinates of the transformed image follows the rule:
(x,y) → (x+8,y)
Hence,
A°(-6,-6) → A'(2,-6)
B°(-6,-4) → B'(2,-4)
C°(-2,-4) → C'(6,-4)
D°(-4,-6) → D'(4,-6)
Hence,
A(-6,4) → A'(2,-6)
B(-6,6) → B'(2,-4)
C(-2,6) → C'(6,-4)
D(-4,4) → D'(4,-6)