Respuesta :

(x-6)^2 + y^2 = (y +10)^2 (x-6)^2 = (y +10)^2 - y^2 = (y+10+y)(y+10-y) = (2y+10)(10) = 2(y+5)(10) = 20(y+5) 1/20*(x-6)^2 = y+5 y = 1/20*(x-6)^2 - 5

:)

Answer:

[tex](x-6)^{2}=20(y+5)^{2}[/tex]


Step-by-step explanation:

The standard for for the equation of a parabola is  [tex](x-h)^{2}=4p(y-k)[/tex]

The focus is given as  [tex](h, k+p)[/tex]

The directrix is given by [tex]y=k-p[/tex]

  • Comparing focus given as [tex](6,0)[/tex]  to formula of focus [tex](h,k+p)[/tex] , we see that [tex]h=6[/tex] and [tex]k+p=0[/tex]
  • Comparing directrix given as [tex]y=-10[/tex]  to formula of directrix [tex]y=k-p[/tex] , we can write [tex]k-p=-10[/tex]

We can use the two system of equations [ [tex]k+p=0[/tex]  and  [tex]k-p=-10[/tex] ] to solve for [tex]k[/tex]  and  [tex]p[/tex].

Adding the two equations gives us:

[tex]2k=-10\\k=\frac{-10}{2}\\k=-5[/tex]

Using this value of [tex]k[/tex] , we can find [tex]p[/tex]  by plugging this value in either equation. Let's put it in Equation 1. We have:

[tex]k-p=-10\\-5-p=-10\\-5+10=p\\p=5[/tex]


Now, that we know [tex]h=6[/tex]  ,  [tex]k=-5[/tex]  ,  and [tex]p=5[/tex]  , we can plug these values in the standard form equation to figure out the parabola's equation. Doing so and rearranging gives us:

[tex](x-6)^{2}=4(5)(y-(-5))^{2}\\(x-6)^{2}=20(y+5)^{2}\\[/tex]

This is the equation of the parabola with focus [tex](6,0)[/tex]  and directrix  [tex]y=-10[/tex]