Respuesta :
[tex]The\ volume\ of\ the\ cone:V=\dfrac{1}{3}\pi r^2H\\\\H=5\ in\\2r=4\ in\to r=2\ in\\\\subtitute\\\\V=\dfrac{1}{3}\pi\cdot2^2\cdot5=\dfrac{1}{3}\pi\cdot4\cdot5=\dfrac{20}{3}\pi\ (in^3)\\\\Answer:\boxed{V=\dfrac{20}{3}\pi\ in^3}[/tex]
Answer:
(A) The volume of the cone is [tex]\frac{20}{3}{\pi}inches^3[/tex].
Step-by-step explanation:
It is given that the cone has a height of 5 inches and the base has the diameter equals to 4 inches, therefore the radius of the cone can be obtained as:
[tex]Radius=\frac{Diameter}{2}[/tex]
[tex]Radius=\frac{4}{2}=2[/tex]inches
And height=5inches
Now, the volume of the cone is obtained as:
[tex]v=\frac{1}{3}{\pi}r^2h[/tex]
Substituting the given values, we get
[tex]v=\frac{1}{3}{\pi}(2)^2(5)[/tex]
[tex]v=\frac{20}{3}{\pi}inches^3[/tex]
Thus, the volume of the cone is [tex]\frac{20}{3}{\pi}inches^3[/tex].
Hence, option A is correct.