danietc
contestada


What is the simplified form of the quantity x squared minus 5x plus 6 over 15 x y squared all over the quantity 2x squared minus 7x plus 3 over 5 x squared y ?

a.3y times the quantity 2x plus 1 over x times the quantity x plus 2

b.x times the quantity x plus 2 over 3y times the quantity 2x plus 1

c.x times the quantity x minus 2 over 3y times the quantity 2x minus 1

d.3y times the quantity 2x minus 1 over x times the quantity x minus 2

Respuesta :

[tex]\frac{x^{2} - 5x + 6}{15xy^{2}} \div \frac{2x^{2} - 7x + 3}{5x^{2}y}[/tex]
[tex]\frac{x^{2} - 5x + 6}{15xy^{2}} \times \frac{5x^{2}y}{2x^{2} - 7x + 3}[/tex]
[tex]\frac{(x - 3)(x - 2)}{3y} \times \frac{x}{(2x - 1)(x - 3)}[/tex]
[tex]\frac{x - 2}{3y} \times \frac{x}{2x - 1}[/tex]
[tex]\frac{x^{2} - 2x}{6xy - 3y}[/tex]

The answer is C.

Answer:

C is the correct option.

Step-by-step explanation:

We have been given the expression

[tex][/tex]

When we flip the denominator, the division sign gets changed to multiplication. The rule is shown below

[tex]\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b}\times\frac{d}{c}[/tex]

Using this rule, we have

[tex]\frac{x^2-5x+6}{15xy^2}\times\frac{5x^2y}{2x^2-7x+3}[/tex]

Now, we can factor the quadratic expressions as

[tex]x^2-5x+6=x^2-3x-2x+6=(x-3)(x-2)[/tex]

[tex]2x^2-7x+3=2x^2-6x-x=(x-3)(2x-1)[/tex]

On plugging these values, we get

[tex]\frac{(x-3)(x-2)}{3\cdot5\cdot xy^2}\times\frac{5x^2y}{(x-3)(2x-1)}[/tex]

On cancelling the common terms in numerator and denominator, we get

[tex]\frac{x(x-2)}{3y(2x-1)}[/tex]

Hence, C is the correct option.