For this case we have that by definition, the density is given by:
[tex]d = \frac {M} {V}[/tex]
Where:
M: It is the mass
V: It is the volume
We find the volume of the cylinder:
[tex]V = \pi * r ^ 2 * h[/tex]
Where:
r: It is the radius of the cylinder
h: It is the height
[tex]V = \pi * 2 ^ 2 * 5\\V = \pi * 4 * 5\\V = \pi * 20\\V = 62.8 \ cm ^ 3[/tex]
So the density is:
[tex]d = \frac {2.5} {62.8}\\d = 0.04[/tex]
Answer:
[tex]d = 0.04 \frac {g} {cm ^ 3}\\Base area: 4 \pi\\Volume: 62.8 \ cm ^ 3[/tex]