Acute △ABC with angles α, β, and γ is inscribed in a circle. Tangents to the circle at points A, B, and C intersect in points M, N, and P. Find measures of angles of the △MNP.

Respuesta :

Answer:

The measures of angles of triangle MNP are

Step-by-step explanation:

The picture of the question in the attached figure

step 1

Find the measure of arcs AB, BC and AC

we know that

The inscribed angle is half that of the arc it comprises.

so

[tex]\gamma=\frac{1}{2}[arc\ AB] ----> arc\ AB=2\gamma\\\alpha=\frac{1}{2}[arc\ BC] ----> arc\ BC=2\alpha\\\beta=\frac{1}{2}[arc\ AC] ----> arc\ AC=2\beta[/tex]

step 2

Find the measure of angle M

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

[tex]M=\frac{1}{2}[arc\ AB+arc\ BC-arc\ AC][/tex]

substitute

[tex]M=\frac{1}{2}[2\gamma+2\alpha-2\beta]\\M=[\gamma+\alpha-\beta][/tex]

step 3   

Find the measure of angle N

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

[tex]N=\frac{1}{2}[arc\ AC+arc\ BC-arc\ AB][/tex]

substitute

[tex]N=\frac{1}{2}[2\beta+2\alpha-2\gamma]\\N=[\beta+\alpha-\gamma][/tex]

step 4    

Find the measure of angle P

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

[tex]P=\frac{1}{2}[arc\ AC+arc\ AB-arc\ BC][/tex]

substitute

[tex]P=\frac{1}{2}[2\beta+2\gamma-2\alpha]\\P=[\beta+\gamma-\alpha][/tex]

Ver imagen calculista