Answer:
[tex] \frac{1}{100} (11 {a}^{3} + 100)(11 {a}^{3} + 100) [/tex]
Step-by-step explanation:
[tex]1.21 {a}^{6} + 22 {a}^{3} + 100 \\ = 1.21 {a}^{6} + 11 {a}^{3} + 11 {a}^{3}+ 100 \\ = 11 {a}^{3} (0.11 {a}^{3} + 1) + 100(0.11 {a}^{3} + 1) \\ = (0.11 {a}^{3} + 1) (11 {a}^{3} + 100) \\ = ( \frac{11}{100} {a}^{3} + 1) (11 {a}^{3} + 100) \\ = ( \frac{11{a}^{3} + 100}{100} ) (11 {a}^{3} + 100) \\ = \frac{1}{100} (11 {a}^{3} + 100)(11 {a}^{3} + 100) \\ are \: the \: required \: factors.[/tex]