Respuesta :
The values are vx = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex], vw = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex] and m∠x = 45°, for the given right angle diagram.
Step-by-step explanation:
The given is,
Right angled triangle XVW,
XW = 14[tex]\sqrt{3}[/tex]
m∠V = 90°
m∠W = 45°
Step:1
Given diagram is right angle triangle,
Trigonometric ratios for right angle is,
[tex]sin[/tex] ∅ [tex]=\frac{Opp}{Hyp}[/tex]............................(1)
[tex]cos[/tex] ∅ [tex]= \frac{Adj}{Hyp}[/tex] .........................(2)
[tex]tan[/tex] ∅ [tex]= \frac{Opp}{Hyp}[/tex]..........................(3)
Step:2
For the value of VX,
[tex]sin[/tex] ∅ [tex]=\frac{VX}{XW}[/tex]
From given,
∅ = 45°
XW = 14[tex]\sqrt{3}[/tex]
Above equation becomes,
[tex]sin[/tex] 45 [tex]=\frac{VX}{14\sqrt{3} }[/tex]
Where, Sin 45 = [tex]\frac{1}{\sqrt{2} }[/tex],
[tex]\frac{1}{\sqrt{2} } = \frac{VX}{14\sqrt{3} }[/tex]
[tex]VX = \frac{14\sqrt{3} }{\sqrt{2} }[/tex]
Step:3
For the value of VW,
[tex]cos[/tex] ∅ [tex]=\frac{VW}{XW}[/tex]
From given,
∅ = 45°
XW = 14[tex]\sqrt{3}[/tex]
Above equation becomes,
[tex]cos[/tex] 45 [tex]=\frac{VW}{14\sqrt{3} }[/tex]
Where, cos 45 = [tex]\frac{1}{\sqrt{2} }[/tex],
[tex]\frac{1}{\sqrt{2} } = \frac{VW}{14\sqrt{3} }[/tex]
[tex]VW = \frac{14\sqrt{3} }{\sqrt{2} }[/tex]
Step:4
For the value m∠x = a,
[tex]tan[/tex] a [tex]=\frac{VX}{VW}[/tex]
From given,
VX = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex]
VW = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex]
Above equation becomes,
[tex]tan[/tex] a [tex]=\frac{\frac{14\sqrt{3} }{\sqrt{2} } } {\frac{14\sqrt{3} }{\sqrt{2} } }[/tex]
[tex]tan[/tex] a = 1
a = [tex]tan^{-1}[/tex] (1)
a = 45°
m∠x = a = 45°
Step:5
Check for solution,
m∠v = m∠w + m∠x
= 45° + 45°
90° = 90°
Result:
The values are vx = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex], vw = [tex]\frac{14\sqrt{3} }{\sqrt{2} }[/tex] and m∠x = 45°, for the given right angle diagram.