Respuesta :

Answer:

The arc length XY is equal to [tex]\frac{50}{9}\pi\ ft[/tex]  or [tex]17.4\ ft[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

step 1

Find the circumference of the circle H

The circumference is given by the formula

[tex]C=2 \pi r[/tex]

we have

[tex]r=xh=10\ ft[/tex]

substitute

[tex]C=2 \pi (10)\\C=20\pi\ ft[/tex]

step 2

we know that

The circumference of a circle subtends a central angle of 360 degrees

so

using proportion

Find out the length of the arc xy if the central angle is equal to 100 degrees

Remember that

[tex]m\angle XHY=arc\ XY=100^o[/tex] ---> by central angle

[tex]\frac{20\pi}{360^o}=\frac{x}{100^o}\\\\x=20\pi(100)/360\\\\x=\frac{2,000}{360}\pi\ ft[/tex]

Simplify

[tex]x=\frac{50}{9}\pi\ ft[/tex] ----> exact value

To find out the approximate value

assume

[tex]\pi=3.14[/tex]

substitute

[tex]x=\frac{50}{9}(3.14)=17.4\ ft[/tex] ----> approximate value

therefore

The arc length XY is equal to [tex]\frac{50}{9}\pi\ ft[/tex]  or [tex]17.4\ ft[/tex]

Ver imagen calculista

The arc length is 17.4 feet

Arc length of circle:

The arc length is given as,

                       [tex]\theta=\frac{arc}{radius}[/tex]

From given figure, It is observed that radius is 10 feet and angle is 100 degree.

Convert 100 degree into radian,

                    [tex]100degree=100*\frac{\pi}{180} =1.74 radian[/tex]

Substitute values in above relation.

                     [tex]1.74=\frac{arc}{10}\\ \\arc=1.74*10=17.4feet[/tex]

Thus, the arc length [tex]xy[/tex] is 17.4 feet

Learn more about the arc length here:

https://brainly.com/question/2005046