Respuesta :

Answer:

[tex]P(x) = -10x^2+290x-530[/tex]    

Step-by-step explanation:

We are given the following in the question:

[tex]\dfrac{dP}{dx} = -20x + 290[/tex]

Initial condition:

[tex]P(5) = $670[/tex]

Solving the given differential equation, we get,

[tex]\dfrac{dP}{dx} = -20x + 290\\\\dP=(-20x + 290)dx\\\text{Integrating both sides}\\\\\displaystyle\int dP = \int (-20x + 290)dx\\\\P(x) = -20\dfrac{x^2}{2} + 290x + C\\\\\text{where C is constant of integration}\\P(x) = -10x^2+290x + C\\P(5) = 670\\670 = -10(5)^2+290(5) + C\\670 = 1200 + C\\\Rightarrow C = -530\\P(x) = -10x^2+290x-530[/tex]

is the required profit function.