Which function has the same graph as y = 2cos(x + pi/4 )?

y = 2sin(x + pi/4 )
y = 2sin(x - pi/4 )
y = 2sin(x + 3pi/4 )
y = 2sin(x - 3pi/4 )

Respuesta :

Answer:

y = 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) has the same graph of y = 2 cos (x + [tex]\frac{\pi }{4}[/tex] ) ⇒ 3rd answer

Step-by-step explanation:

Let us revise the rules of the trigonometric compound angles

cos(x + y) = cos x cos y - sin x sin y

sin(x + y) = sin x cos y + cos x sin y

Let us solve the problem using the rules above

y = 2 cos (x + [tex]\frac{\pi }{4}[/tex] )

∵ 2 cos (x + [tex]\frac{\pi }{4}[/tex] ) = 2[cos x cos [tex]\frac{\pi }{4}[/tex]  - sin x sin [tex]\frac{\pi }{4}[/tex] ]

∵ cos [tex]\frac{\pi }{4}[/tex]  = [tex]\frac{\sqrt{2}}{2}[/tex]  and sin [tex]\frac{\pi }{4}[/tex]  = [tex]\frac{\sqrt{2}}{2}[/tex]  

- Substitute them in the right hand side

∴ 2 cos (x + [tex]\frac{\pi }{4}[/tex] ) = 2[ [tex]\frac{\sqrt{2}}{2}[/tex] cos x  -  [tex]\frac{\sqrt{2}}{2}[/tex] sin x]

- Multiply the bracket in the right hand side by 2

∴ 2 cos (x + [tex]\frac{\pi }{4}[/tex] ) = [tex]\sqrt{2}[/tex] cos x - [tex]\sqrt{2}[/tex] sin x

y = [tex]\sqrt{2}[/tex] cos x - [tex]\sqrt{2}[/tex] sin x

Now let us find the function which give the same right hand side of the function above

y = 2 sin (x + [tex]\frac{3\pi }{4}[/tex] )

∵ 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) = 2[sin x cos [tex]\frac{3\pi }{4}[/tex]  + cos x sin [tex]\frac{3\pi }{4}[/tex] ]

∵ sin [tex]\frac{3\pi }{4}[/tex]  = [tex]\frac{\sqrt{2}}{2}[/tex]  and cos [tex]\frac{3\pi }{4}[/tex]  = [tex]-\frac{\sqrt{2}}{2}[/tex]  

- Substitute them in the right hand side

∴ 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) = 2[ [tex]-\frac{\sqrt{2}}{2}[/tex] sin x  + [tex]\frac{\sqrt{2}}{2}[/tex] cos x]

- Multiply the bracket in the right hand side by 2

∴ 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) =  [tex]-\sqrt{2}[/tex] sin x  + [tex]\sqrt{2}[/tex] cos x

- Switch the two terms of the right hand side

∴ 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) =  [tex]\sqrt{2}[/tex] cos x - [tex]\sqrt{2}[/tex] sin x  

y =  [tex]\sqrt{2}[/tex] cos x - [tex]\sqrt{2}[/tex] sin x

- The same with right hand side of the function above

y = 2 sin (x + [tex]\frac{3\pi }{4}[/tex] ) has the same graph of y = 2 cos (x + [tex]\frac{\pi }{4}[/tex] )