In the right triangle shown, \angle B = 60^\circ∠B=60

angle, B, equals, 60, degrees and AB = 12AB=12A, B, equals, 12.
How long is ACACA, C?
Answer exactly, using a radical if needed.

Respuesta :

Answer:

Part 1) [tex]AC=6\sqrt{3}\ units[/tex]

Part 2) [tex]AC=12\sqrt{3}\ units[/tex]

Step-by-step explanation:

I will analyze two problems

see the attached figure to better understand the problem

Problem 1

The hypotenuse is the segment AB  and the right angle is C

we know that

In the right triangle ABC

[tex]sin(B)=\frac{AC}{AB}[/tex] ---> by SOH (opposite side divided by the hypotenuse)

substitute the given values

[tex]sin(60^o)=\frac{AC}{12}[/tex]

Remember that

[tex]sin(60^o)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]\frac{\sqrt{3}}{2}=\frac{AC}{12}[/tex]

[tex]AC=6\sqrt{3}\ units[/tex]

Problem 2

The hypotenuse is the segment BC  and the right angle is A

we know that

In the right triangle ABC

[tex]tan(B)=\frac{AC}{AB}[/tex] ---> by TOA (opposite side divided by the adjacent side)

substitute the given values

[tex]tan(60^o)=\frac{AC}{12}[/tex]

Remember that

[tex]tan(60^o)=\sqrt{3}[/tex]

substitute

[tex]\sqrt{3}=\frac{AC}{12}[/tex]

[tex]AC=12\sqrt{3}\ units[/tex]

Ver imagen calculista