Let F = sin ( 8 x + 5 z ) i − 8 y e x z k . F=sin⁡(8x+5z)i−8yexzk. Calculate div ( F ) div(F) and curl ( F ) . and curl(F). (Express numbers in exact form. Use symbolic notation and fractions where needed.)

Respuesta :

Answer:

Required results are [tex]\nabla .\vec{F}[/tex]=8\cos(8x+5z)-8ye^x[/tex]  and  [tex]\nabla\times \vec{F}=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}[/tex]

Step-by-step explanation:

Given vector function is,

[tex]\vec{F}=\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k}[/tex]

To find [tex]\nabla .\vec{F}[/tex] and [tex]\nabla \times \vec{F}[/tex] .

[tex]\nabla .\vec{F}[/tex]

[tex]=(\frac{\partial}{\partial x}\uvec{i}+\frac{\partial}{\partial y} \uvec{j}+\frac{\partial}{\partial z} \uvec{k})(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})[/tex]

[tex]=\frac{\partial}{\partial x}(\sin(8x+5z))-\frac{\partial}{\partial z}(8ye^xz)[/tex]

[tex]=8\cos(8x+5z)-8ye^x[/tex]

And,

[tex]\nabla \times \vec{F}[/tex]

[tex]=(\frac{\partial}{\partial x}\uvec{i}+\frac{\partial}{\partial y} \uvec{j}+\frac{\partial}{\partial z} \uvec{k})\times(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})[/tex]

[tex]\end{Vmatrix}[/tex]

[tex]=\uvec{i}\Big[\frac{\partial}{\partial y}(-8ye^xz)\Big]-\uvec{j}\Big[\frac{\partial}{\partial x}(-8ye^xz)-\frac{\partial}{\partial z}(\sin(8x+5z))\Big]+\uvec{k}\Big[-\frac{\partial}{\partial y}(-\sin(8x+5z))\Big][/tex]

[tex]=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}[/tex]

Hence the result.