A travel mug of 87∘C coffee is left on the roof of a parked car on a cold winter day. The temperature of the coffee after t minutes is given by H=87(2)−t/14. After how many minutes will the coffee be only lukewarm (30∘C)?

Respuesta :

Answer:

After 21.28  minutes will the coffee be only lukewarm (30∘C)

Step-by-step explanation:

Given -

A travel mug of 87∘C coffee is left on the roof of a parked car on a cold winter day . The temperature of the coffee after t minutes is given by

                 [tex]H = 87(2)^{\frac{-t}{14}}[/tex]

Let after [tex]t_{1}[/tex] time  H will be [tex]$30^\circ$[/tex]C

put t = [tex]t_{1}[/tex]  ,  H = [tex]$30^\circ$[/tex]C

       [tex]30 = 87(2)^{\frac{-t_{1}}{14}}[/tex]

       [tex]\frac{30}{87} = (2)^{\frac{-t_{1}}{14}}[/tex]

      .3448275 = [tex](2)^{\frac{-t_{1}}{14}}[/tex]

     Taking logarithm both side  

     [ [tex]log(2^{x}) = xlog2[/tex] ]

      log.3448275 = [tex]{\frac{-t_{1}}{14}}[/tex] log 2

      -.4581  =  [tex]{\frac{-t_{1}}{14}} \times.3010[/tex]

       [tex]{\frac{-t_{1}}{14}}[/tex]  =  -1.52

       [tex]t_{1}[/tex] = 21.28 minutes