Answer:
She should guarantee a weight of 4.18 pounds.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 8.6, \sigma = 1.9[/tex]
What weight should she guarantee so that she will have to give her customer's money back only 1% of the time?
She should guarantee the 1st percentile of weights, which is X when Z has a pvalue of 0.01. So it is X when Z = -2.327.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-2.327 = \frac{X - 8.6}{1.9}[/tex]
[tex]X - 8.6 = -2.327*1.9[/tex]
[tex]X = 4.18[/tex]
She should guarantee a weight of 4.18 pounds.