He takes a random sample of 49 recent charterholders and computes a mean salary of $172,000 with a standard deviation of $35,000. Use this sample information to determine the 90% confidence interval for the average salary of a CFA charterholder.

Respuesta :

Answer:

the 90% of confidence intervals for the average salary of a CFA charter holder

 (1,63,775 , 1,80,000)

Step-by-step explanation:

Explanation:-

random sample of n = 49 recent charter holders

mean of sample (x⁻) =  $172,000

standard deviation of sample( S) = $35,000

Level of significance α= 1.645

90% confidence interval

[tex](x^{-} - Z_{\alpha } \frac{s}{\sqrt{n} } , x^{-} + Z_{\alpha } \frac{s}{\sqrt{n} })[/tex]

[tex](172000 - 1.645 \frac{35000}{\sqrt{49} } , 172000 +1.645 \frac{35000}{\sqrt{49} })[/tex]

on calculation , we get

(1,63,775 , 1,80,000)

The mean value lies between the 90% of confidence intervals

(1,63,775 , 1,80,000)