Answer:
the 90% of confidence intervals for the average salary of a CFA charter holder
(1,63,775 , 1,80,000)
Step-by-step explanation:
Explanation:-
random sample of n = 49 recent charter holders
mean of sample (x⁻) = $172,000
standard deviation of sample( S) = $35,000
Level of significance α= 1.645
90% confidence interval
[tex](x^{-} - Z_{\alpha } \frac{s}{\sqrt{n} } , x^{-} + Z_{\alpha } \frac{s}{\sqrt{n} })[/tex]
[tex](172000 - 1.645 \frac{35000}{\sqrt{49} } , 172000 +1.645 \frac{35000}{\sqrt{49} })[/tex]
on calculation , we get
(1,63,775 , 1,80,000)
The mean value lies between the 90% of confidence intervals
(1,63,775 , 1,80,000)