Answer:
[tex]1.6026299569\times 10^{-11}\ m[/tex]
Explanation:
Grating constant
[tex]d=\dfrac{1}{6200}=0.000161\ cm=0.000161\times 10^{-2}\ m[/tex]
Number of slits
[tex]N=3.14\times 6200=19468[/tex]
Order
[tex]m=\dfrac{d}{\lambda}\\\Rightarrow m=\dfrac{0.000161\times 10^{-2}}{624\times 10^{-9}}\\\Rightarrow m\approx 2[/tex]
At m = 1
[tex]\Delta\lambda=\dfrac{\lambda}{mN}\\\Rightarrow \Delta\lambda=\dfrac{624\times 10^{-9}}{1\times 19468}\\\Rightarrow \Delta\lambda=3.2052599137\times 10^{-11}\ m[/tex]
At m = 2
[tex]\Delta\lambda=\dfrac{\lambda}{mN}\\\Rightarrow \Delta\lambda=\dfrac{624\times 10^{-9}}{2\times 19468}\\\Rightarrow \Delta\lambda=1.6026299569\times 10^{-11}\ m[/tex]
The wavelengths can be close by [tex]1.6026299569\times 10^{-11}\ m[/tex]