Answer:
a)[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]\bar X = 112.75[/tex]
[tex]s^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
[tex] s^2 = 540.5[/tex]
b) [tex] t = \frac{\bar X -\mu}{\frac{s}{\sqrt{n}}}[/tex]
And if we replace we got:
[tex] t = \frac{112.75-112}{\frac{23.249}{\sqrt{8}}}= 0.0912[/tex]
Step-by-step explanation:
Part a
For this case we have the following data: 111 113 145 105 90 100 150 88
We can calculate the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex]\bar X = 112.75[/tex]
And the sample variance can be calculated with this formula:
[tex]s^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
And replacing we got:
[tex] s^2 = 540.5[/tex]
Part b
For this case we want to check is the true mean is equal to 102 or no, the t statistic is given by:
[tex] t = \frac{\bar X -\mu}{\frac{s}{\sqrt{n}}}[/tex]
And if we replace we got:
[tex] t = \frac{112.75-112}{\frac{23.249}{\sqrt{8}}}= 0.0912[/tex]