Answer:
0.0499
Step-by-step explanation:
This is a binomial probability function expressed as:
[tex]P(X=x)={n\choose x}p^x(1-p)^{n-x}\\\\[/tex]
Given that n =8, and p(male)=1-0.6=0.4, the probability of at least 6 being male is calculated as:
[tex]P(X=x)={n\choose x}p^x(1-p)^{n-x}\\\\P(X\geq 6)=P(X=6)+P(X=7)+P(X=8)\\\\={8\choose 6}0.4^6(0.6)^{2}+{8\choose 7}0.4^7(0.6)^{1}+{8\choose 8}0.4^8(0.6)^{0}\\\\=0.0413+0.0079+0.0007\\\\=0.0499[/tex]
Hence, the probability of at least 6 males is 0.0499