Respuesta :
Answer:
[tex]\Delta A = 5.9\,cm^{2}[/tex]
Step-by-step explanation:
The area of an rectangle is given by the following formula:
[tex]A = w\cdot h[/tex]
Where:
[tex]w[/tex] - Width, in centimeters.
[tex]h[/tex] - Height, in centimeters.
The differential of the expression is derived hereafter:
[tex]\Delta A = \frac{\partial A}{\partial w} \cdot \Delta w + \frac{\partial A}{\partial h}\cdot \Delta h[/tex]
[tex]\Delta A = h \cdot \Delta w + w \cdot \Delta h[/tex]
[tex]\Delta A = (31\,cm)\cdot (0.1\,cm) + (28\,cm)\cdot (0.1\,cm)[/tex]
[tex]\Delta A = 5.9\,cm^{2}[/tex]
Using differentials the maximum error in the calculated area of the rectangle wi’ould be 5.9 cm
The area formular of a rectangle is :
- Area = Length(l) × width(w)
- w = 28 cm
- l = 31 cm
- Error, Δe = 0.1cm
Maximum error can be defined thus :
- Δmax = (L × Δe) + (W × Δe)
Δmax = (L × Δe) + (W × Δe)
Δmax = (31 × 0.1) + (28 × 0.1)
Δmax = 3.1 + 2.8
Δmax = 5.9 cm
Hence, the maximum error in the calculated area value is 5.9 cm.
Learn more : https://brainly.com/question/14717218