Answer:
a) 0.65
b) 0.1581
Step-by-step explanation:
We are given the following in the question:
Distribution of X:
Mean = 0.125
Standard deviation = 0.05
Distribution of Y:
Mean = 0.350
Standard deviation = 0.10
Solution:
[tex]M = X + 1.5Y[/tex]
a) mean of M
[tex]\mu_M = \mu_X + 1.5(\mu_Y) = 0.125 + 1.5(0.350) = 0.65[/tex]
b) standard deviation of M
If X and Y are independent then,
[tex]Var(X+Y) = Var(X) + Var(Y)\\Var)aX) = a^2Var(X)[/tex]
[tex]Var(M) = Var(X+1.5Y)\\Var(M) =Var(X) + (1.5)^2Var(Y)\\Var(M) = (0.05)^2 + (1.5)^2(0.10)^2 = 0.025[/tex]
Standard deviation of M =
[tex]=\sqrt{Var(M)} = \sqrt{0.025} = 0.1581[/tex]