A cylindrical can without a top is made to contain 25 3 cm of liquid. What are the dimensions of the can that will minimize the cost to make the can if the metal for the sides will cost $1.25 per 2 cm and the metal for the bottom will cost $2.00 per 2 cm ?

Respuesta :

Answer:

Therefore the radius of the can is 1.71 cm and height of the can is 2.72 cm.

Step-by-step explanation:

Given that, the volume of cylindrical can with out top is 25 cm³.

Consider the height of the can be h and radius be r.

The volume of the can is V= [tex]\pi r^2h[/tex]

According to the problem,

[tex]\pi r^2 h=25[/tex]

[tex]\Rightarrow h=\frac{25}{\pi r^2}[/tex]

The surface area of the base of the can is = [tex]\pi r^2[/tex]

The metal for the bottom will cost $2.00 per cm²

The metal cost for the base is =$(2.00× [tex]\pi r^2[/tex])

The lateral surface area of the can is = [tex]2\pi rh[/tex]

The metal for the side will cost $1.25 per cm²

The metal cost for the base is =$(1.25× [tex]2\pi rh[/tex])

                                                 [tex]=\$2.5 \pi r h[/tex]

Total cost of metal is C= 2.00 [tex]\pi r^2[/tex]+[tex]2.5 \pi r h[/tex]

Putting [tex]h=\frac{25}{\pi r^2}[/tex]

[tex]\therefore C=2\pi r^2+2.5 \pi r \times \frac{25}{\pi r^2}[/tex]

[tex]\Rightarrow C=2\pi r^2+ \frac{62.5}{ r}[/tex]

Differentiating with respect to r

[tex]C'=4\pi r- \frac{62.5}{ r^2}[/tex]

Again differentiating with respect to r

[tex]C''=4\pi + \frac{125}{ r^3}[/tex]

To find the minimize cost, we set C'=0

[tex]4\pi r- \frac{62.5}{ r^2}=0[/tex]

[tex]\Rightarrow 4\pi r=\frac{62.5}{ r^2}[/tex]

[tex]\Rightarrow r^3=\frac{62.5}{ 4\pi}[/tex]

⇒r=1.71

Now,

[tex]\left C''\right|_{x=1.71}=4\pi +\frac{125}{1.71^3}>0[/tex]

When r=1.71 cm, the metal cost will be minimum.

Therefore,

[tex]h=\frac{25}{\pi\times 1.71^2}[/tex]

⇒h=2.72 cm

Therefore the radius of the can is 1.71 cm and height of the can is 2.72 cm.