Answer:
[tex]W=173.48J[/tex]
Explanation:
information we know:
Total force: [tex]F=45N[/tex]
Weight: [tex]w=100N[/tex]
distance: [tex]4m[/tex]
vertical component of the force: [tex]F_{y}=12N[/tex]
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: [tex]F_{x}=Fcos\theta[/tex]
vertical component: [tex]F_{y}=Fsen\theta[/tex]
but from the given information we know that [tex]F_{y}=12N[/tex]
so, equation these two [tex]F_{y}=Fsen\theta[/tex] and [tex]F_{y}=12N[/tex]
[tex]Fsen\theta =12N[/tex]
and we know the force [tex]F=45N[/tex], thus:
[tex]45sen\theta=12[/tex]
now we clear for [tex]\theta[/tex]
[tex]sen\theta =12/45\\\theta=sin^{-1}(12/45)\\\theta =15.466[/tex]
the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:
[tex]F_{x}=Fcos\theta[/tex]
[tex]F_{x}=45cos(15.466)\\F_{x}=43.37N[/tex]
whith this horizontal component we calculate the work to move the crate a distance of 4 m:
[tex]W=F_{x}*D\\W=(43.37N)(4m)\\W=173.48J[/tex]
the work done is W=173.48J