Respuesta :
Answer:
Rp = 10 Ohms; I = 0.9 Amps
Explanation:
Since, there are two resistors each with 20Ω connected in parallel, the total resistance of the combination (Rp) of the circuit is as follows:
i.e 1/Rp = (1/R1 + 1/R2)
1/Rp = (1/20Ω + 1/20Ω)
1/Rp = (1 + 1)/20Ω
1/Rp = 2/20Ω
1/Rp = 1/10Ω
To get the value of Rp, cross multiply
Rp x 1 = 10Ω x 1
Rp = 10Ω
Apply the formula
Voltage V = Current I x Total resistance Rp
I = V/Rp
I = 9V/10Ω
I = 0.9 Amps
Thus, the total resistance is 10 Ohms, the current through the ammeter is 0.9 Amps
Answer :
- Total resistance is 10Ω
- Current through the ammeter is of 0.9 A
Explaination :
As we know that, if n resistances R1 , R2 and R3 .... Rn are joined in parallel the equivalent resistance is given as :
[tex] \boxed{ \sf{ \dfrac{1}{R_p} \: = \: \dfrac{1}{R_1}\: + \: \dfrac{1}{R_2} \: + \: \dfrac{1}{R_3} \: \: .... \: \dfrac{1}{R_n} }}[/tex]
R1 = 20Ω
R2 = 20Ω
Putting the values,
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \dfrac{1}{20Ω}\: + \: \dfrac{1}{20Ω}}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \dfrac{1 \times 1}{20}\: + \: \dfrac{1 \times 1}{20}}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \: \dfrac{1 \: + \: 1}{20}}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \: \dfrac{2}{20}}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \: \cancel\dfrac{2}{20}}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{1}{R_p} \: = \: \dfrac{1}{10}}[/tex]
[tex]: \longmapsto \: \pink{\bf{R_p\: = \: 10Ω }}[/tex]
Current through the ammete:-
As we know that,
- [tex]\boxed{ \sf{I \: = \: \frac{V}{R } }}[/tex]
Here ,
- I is current
- V is Volts
- R is resistance
Putting the values,
[tex]\longmapsto \: \sf{I \: = \: \dfrac{9}{10 } }[/tex]
[tex] \longmapsto \: \red{\bf{I \: = \: 0.9}}[/tex]