Answer:
For a duration of 5 years, Monthly Payment =$600.42
For a duration of 6 years, Monthly Payment =$508.83
Step-by-step explanation:
[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\[/tex]
where a= Amount to Finance=$33,000
Annual interest rate = 3.5%=0.035
r=Monthly Interest Rate= 0.035 ÷ 12 =[tex]\frac{7}{2400}[/tex]
n=number of months to pay
For a duration of 5 years
n=5X12=60 months
[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\\\P=\dfrac{33000 X\frac{7}{2400} (1+\frac{7}{2400} )^{60}}{(1+\frac{7}{2400})^{60}-1} \\=\dfrac{96.25 (1.1909)}{1.1909-1}\\=\dfrac{96.25 (1.1909)}{0.1909}\\=\dfrac{114.62}{0.1909}=\$600.42[/tex]
For a duration of 6 years
n=6X12=72 months
[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\\\P=\dfrac{33000 X\frac{7}{2400} (1+\frac{7}{2400} )^{72}}{(1+\frac{7}{2400})^{72}-1} \\=\dfrac{96.25 (1.2333)}{1.2333-1}\\=\dfrac{96.25 (1.2333)}{0.2333}\\=\dfrac{118.71}{0.2333}=\$508.83[/tex]