Answer:
[tex]26.0689859363\ cm^3[/tex]
Explanation:
Absolute pressure is given by
[tex]P_1=P_0+\rho gh\\\Rightarrow P_1=101325+1000\times 9.81\times 6.5\\\Rightarrow P_1=165090\ Pa[/tex]
[tex]P_2=101325\ Pa[/tex]
We have the relation
[tex]P_1V_1=P_2V_2\\\Rightarrow V_2=\dfrac{P_1V_1}{P_2}\\\Rightarrow V_2=\dfrac{165090\times 16\times 10^{-6}}{101325}\\\Rightarrow V_2=0.0000260689859363\ m^3\\\Rightarrow V_2=26.0689859363\ cm^3[/tex]
The bubble's volume just below the surface is [tex]26.0689859363\ cm^3[/tex]