Respuesta :
Answer:
1.8 × 10⁻¹⁶ mol
Explanation:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹
1.2 + 3s 2s
[tex]K_{sp} =\text{[Sr$^{2+}$]$^{3}$[PO$_{4}^{3-}$]$^{2}$} = (1.2 + 3s)^{3}\times (2s)^{2} = 1.0 \times 10^{-31}\\\text{Assume } 3s \ll 1.2\\1.2^{3} \times 4s^{2} = 1.0 \times 10^{-31}\\6.91s^{2} = 1.0 \times 10^{-31}\\s^{2} = \dfrac{1.0 \times 10^{-31}}{6.91} = 1.45 \times 10^{-32}\\\\s = \sqrt{ 1.45 \times 10^{-32}} = 1.20 \times 10^{-16} \text{ mol/L}\\[/tex]
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹ = 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹ = 1.8 × 10⁻¹⁶ mol
The amount of moles in PO₄³- is 1.8 × 10⁻¹⁶ mol.
Calculation of Solubility:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹(Solubility product)
1.2 + 3s 2s
[tex]Ksp = [Sr^{2+}]^3[PO_4^{3-}]^2\\\\=(1.2+3s)^2*(2s)^2=1.0*10^{-31}\\\\1.2^3*4s=1.0*10^{-31}\\\\6.91s^2=1.0*10^{-31}\\\\s^2=1.45*10^{-32}\\\\s=1.20*10^{-16} mol/L[/tex]
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹
= 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹
= 1.8 × 10⁻¹⁶ mol
Find more information about Solubility product here:
brainly.com/question/9807304