Respuesta :

Given:

The length of arc TS = 40 in

To find:

The length of arc RS.

Solution:

Length of TS = 40 in

θ = 80°

Using arc length formula:

[tex]$\text { Arc length }=2 \pi {r}\left(\frac{\theta}{360}\right)[/tex]

[tex]$40=2 \times 3.14 \times {r}\left(\frac{80}{360}\right)[/tex]

[tex]$40=6.28 \times {r}\left(\frac{2}{9}\right)[/tex]

[tex]$40=1.39\times r[/tex]

Divide by 1.39 on both sides, we get

[tex]28.7=r[/tex]

Radius = 28.7

Complete angle of circle = 360°

Angle measure of RS = 360° - 60° - 120° - 80°

Angle measure of RS = 100°

Arc length of RS:

[tex]$\text { Arc length }=2 \pi {r}\left(\frac{\theta}{360}\right)[/tex]

Substitute θ = 100° and r = 28.7

                 [tex]$=2 \times 3.14 \times 28.7 \left(\frac{100}{360}\right)[/tex]

                 = 50 inch

The length of arc Rs is 50 inches.