A 0.5kg stone moving north at 4 m/s collides with a 4kg lump of clay moving west at 1 m/s. The stone becomes embedded in the clay. What is the velocity (magnitude and direction) of the composite body after the collision?

Respuesta :

Answer:

The velocity of the composite body is 0.99m/s 63.43° west of north.

Explanation:

Here the law of conservation of energy says that

[tex](1).\: \: m_1v_1cos(0)+m_2v_2cos(90^o)=(m_1+m_2)v_f cos(\theta)[/tex]

[tex](2).\: \: m_1v_1sin(0)+m_2v_2sin(90^o)=(m_1+m_2)v_f sin(\theta)[/tex]

where [tex]v_f[/tex] is the final velocity if the composite body, and [tex]\theta[/tex] is measured from west of north.

Putting in numbers and simplifying the above equation we get:

[tex](3).\: \: m_1v_1=(m_1+m_2)v_f cos(\theta)[/tex]

[tex](4).\: \: m_2v_2=(m_1+m_2)v_f sin(\theta)[/tex]

dividing equation (4) by (3) gives

[tex]\dfrac{ m_2v_2=(m_1+m_2)v_f sin(\theta)}{ m_1v_1=(m_1+m_2)v_f cos(\theta)}[/tex]

[tex]\dfrac{m_2v_2}{m_1v_1} = \dfrac{sin(\theta)}{ cos(\theta)}[/tex]

[tex](5).\: \: tan(\theta) = \dfrac{m_2v_2}{m_1v_1}[/tex]

putting in [tex]m_1 = 0.5kg[/tex], [tex]v_1 = 4m/s[/tex], [tex]m_2 = 4kg[/tex], and [tex]v_2 = 1m/s[/tex] we get:

[tex]tan(\theta) = \dfrac{(4kg)(1m/s)}{(0.5kg)(4m/s)}[/tex]

[tex]\boxed{\theta = 63.43^o}[/tex]

Thus, the final velocity [tex]v_f[/tex] we get from equation (3) is:

[tex]v_f=\dfrac{m_1v_1}{(m_1+m_2)cos(\theta)}[/tex]

[tex]v_f=\dfrac{(0.5kg)(4m/s)}{(4kg+0.5kg)cos(63.43^o)}[/tex]

[tex]\boxed{v_f = 0.99m/s}[/tex]

Thus, the velocity of the composite body is 0.99m/s 63.43° west of north.