Respuesta :
The value of the d is 6.48, if the angle D E F is 90 degrees and angle F D E is 42 degrees and the length of D E is 7.2 and the length of E F is d.
Step-by-step explanation:
The given is,
Angle D E F is 90 degrees
Angle F D E is 42 degrees
The length of D E is 7.2
The length of E F is d
Step:1
For the given values,
Triangle DEF is right angle triangle,
Ref the attachment,
Angle FDE, ∅ = 42°
DE = 7.2
EF = d
Trigonometric ratio for the given right angle triangle,
[tex]tan[/tex] ∅ = [tex]\frac{Opp}{Adj}[/tex]
[tex]tan[/tex] ∅ = [tex]\frac{EF}{DE}[/tex]
[tex]tan 42 = \frac{d}{7.2}[/tex]
( the value of tan 42° = 0.900404 )
[tex](0.900404)(7.2)= d[/tex]
[tex]d=6.48[/tex]
EF = d = 6.48
Result:
The value of the d is 6.48, if the angle D E F is 90 degrees and angle F D E is 42 degrees and the length of D E is 7.2 and the length of E F is d.