Triangle D E F is shown. Angle D E F is 90 degrees and angle F D E is 42 degrees. The length of D E is 7.2 and the length of E F is d. What is the value of d to the nearest hundredth? d ≈

Respuesta :

The value of the d is 6.48, if the angle D E F is 90 degrees and angle F D E is 42 degrees and the length of D E is 7.2 and the length of E F is d.

Step-by-step explanation:

The given is,

                    Angle D E F is 90 degrees

                    Angle F D E is 42 degrees

                    The length of D E is 7.2

                    The length of E F is d

Step:1

                   For the given values,

                   Triangle DEF is right angle triangle,

                   Ref the attachment,

                             Angle FDE, ∅ = 42°

                                               DE = 7.2

                                               EF = d

                   Trigonometric ratio for the given right angle triangle,

                                            [tex]tan[/tex] ∅ = [tex]\frac{Opp}{Adj}[/tex]

                                            [tex]tan[/tex] ∅ = [tex]\frac{EF}{DE}[/tex]

                                            [tex]tan 42 = \frac{d}{7.2}[/tex]

                 ( the value of tan 42° = 0.900404 )

                            [tex](0.900404)(7.2)= d[/tex]

                                                 [tex]d=6.48[/tex]

                                         EF = d = 6.48

Result:

           The value of the d is 6.48, if the angle D E F is 90 degrees and angle F D E is 42 degrees and the length of D E is 7.2 and the length of E F is d.

Ver imagen monica789412

Answer:

6.48

Step-by-step explanation:

just did the test